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Enzymes able to degrade or modify acyl-homoserine lactones
(AHLs) have drawn considerable interest for their ability to
interfere with the bacterial communication process referred to
as quorum sensing. Many proteobacteria use AHL to coordinate
virulence and biofilm formation in a cell density–dependent
manner; thus, AHL-interfering enzymes constitute new promis-
ing antimicrobial candidates. Among these, lactonases and acy-
lases have been particularly studied. These enzymes have been
isolated from various bacterial, archaeal, or eukaryotic organ-
isms and have been evaluated for their ability to control several
pathogens. Engineering studies on these enzymes were carried
out and successfully modulated their capacity to interact with
specific AHL, increase their catalytic activity and stability, or
enhance their biotechnological potential. In this review, special
attention is paid to the screening, engineering, and applications
of AHL-modifying enzymes. Prospects and future opportunities
are also discussed with a view to developing potent candidates
for bacterial control.

Over the last 2 decades, it has become evident that bacteria
are social microorganisms with the ability to coordinate their
behavior in a cell density–dependent manner (1). This commu-
nication, referred to as quorum sensing (QS), relies on the syn-
thesis, diffusion, and detection of small signaling molecules,
also known as autoinducers (AIs) (Fig. 1A) (2, 3). Thanks to this
cell-to-cell communication process, bacteria can collectively
adapt their behavior as AIs accumulate proportionally to cell
density and orchestrate gene expression depending on AI con-
centration. QS thus enables bacteria to regulate mechanisms
that are beneficial above a certain population threshold but are
noneffective and may be deleterious at low cell density. A wide
variety of chemical molecules have been integrated into bacte-
rial communication, with Gram-negative bacteria mainly using
acyl-homoserine lactones (AHLs) (4, 5). AHL chemical struc-
ture includes a homoserine lactone ring with an acyl chain that
can vary in length or functionalization (Fig. 1B). AHL have
been largely studied because they are involved in the regulation
of many bacterial traits, including virulence (6, 7), biofilm for-
mation (8), or tolerance to antimicrobials (9, 10), and are used
by many human pathogenic bacteria, including antibiotic-re-
sistant bacteria, during their infection process (11–13). Several

antibiotic-resistant strains were flagged by the WHO as
research priority targets. This list includes various Gram-nega-
tive bacteria with AHL-mediated virulence (e.g. Pseudomonas
aeruginosa, Acinetobacter baumannii, and Klebsiella pneumo-
niae) (Fig. 2) (14). Interfering with AHL signaling is thus con-
sidered a potential way to decrease bacterial virulence and to
strengthen the available antimicrobial arsenal (16, 17). This
strategy, also known as quorum quenching (QQ), can be
achieved using various compounds, including natural or syn-
thetic QS inhibitors (QSIs) able to compete with AHL, seques-
tering antibodies or degrading enzymes (18). AHL-interfering
enzymes have been extensively investigated as they do not need
direct contact with bacteria conversely to QSIs. Indeed, they
can catalytically degrade AHL without the need for entering
cells, being less invasive than QSIs, and may further show bac-
tericidal effects (19–21). The main representatives of such
enzymes are lactonases and acylases (Fig. 3). These enzymes
have been isolated from a wide variety of prokaryotes, archaea,
or eukaryotes. Lactonases catalyze the opening of the lactone
ring, whereas acylases remove the acyl chain from the homo-
serine lactone moiety (Fig. 1B) (22, 23). AHL-degrading lacto-
nases from different protein families were reported, including
metallo-b-lactamase, phosphotriesterase-like lactonase (PLL),
or paraoxonase. Conversely, acylases active toward AHLmainly
belong to theNtn-hydrolase family (21). The biochemical prop-
erties of these enzymes have been investigated, including their
kinetic properties, stability, and ability to control microbes
both in vitro and in vivo for various applications, ranging from
medical devices to animal health and agriculture (19, 21). In
addition, several protein engineering approaches have been
considered to increase activity, enhance stability, or change
AHL selectivity. Besides acylases and lactonases, other AHL-
interfering enzymes were also reported, including oxidoreduc-
tases or esterases, albeit their activity and engineering were
more rarely studied (21).
Considering the global antimicrobial resistance concern, QQ

offers a new approach to counteract bacterial virulence while not
challenging survival of bacteria and limiting their adaptation. In
this review, a focus on QQ enzymes and their engineering is
presented. Rational, semi-rational, and random mutagenesis
approaches are reviewed along with screening methodologies.
Kinetic characterization and stability of engineered variants are
discussed compared with native enzymes, and the potential
applications of these biocatalysts are further examined.
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Figure 1. Canonical quorum sensing in Gram-negative bacteria and quorum quenching. A, AHLs (blue triangles) are produced by cells and diffuse freely
in and out cells. AHL concentration increases with cell concentration. Above a certain threshold, AHLs bind and activate the QS regulator, which in turn can
bind QS promoter sequences and induce the expression of QS genes, such as the AHL synthase gene (I) and other target genes (T). QQ enzymes degrade
extracellular AHLs, the QS regulator is not activated, and QS genes are not expressed. Strings, arrows, and boxes represent genetic arrangements. B, AHLs con-
sist of a homoserine lactone ring with an acyl chain that can vary in length (green) or functionalization (red). AHLs can be differentially targeted by lactonase
and acylase enzymes.

Figure 2. Various Gram-negative bacteria that use AHL-based sensing to control pathogenicity. AHLs reported for each bacterium are highlighted in
red (15).
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Figure 3. Structural overview of AHL-interfering enzymes. AiiA and SsoPox lactonases and the acylase PvdQ are presented using the same scale. A, crystal
structure of the 28-kDa metalloenzyme lactonase (EC 3.1.1.81) AiiA mutant F107W from Bacillus thuringiensis with N-decanoyl-L-homoserine bound at the
active site (PDB entry 4J5H). AiiA belongs to the metallo-b-lactamase superfamily and harbors two Zn(II) ions bound at the active site essential to catalytic ac-
tivity. B, crystal structure of the 35-kDametalloenzyme, PLL SsoPoxW263I (EC 3.1.8.1) in complex with C10-HTL (PDB entry 4KF1). SsoPox belongs to the amido-
hydrolase superfamily and exhibits a (a/b)8-barrel fold (the so-called TIM-barrel) and harbors a bicobalt active site. Loops 7 (red) and 8 (orange) play key roles
in substrate recognition and protein flexibility. C, crystal structure of the acylase PvdQ (EC 3.5.1.97) with a covalently bound dodecanoic acid (PDB entry
2WYB). PvdQ is amember of the Ntn-hydrolase superfamily and is formed by an 18-kDaa-chain (purple) and a 60-kDab-chain (pink).

JBC REVIEWS: Tailoring quorum-quenching enzymes

J. Biol. Chem. (2020) 295(37) 12993–13007 12995

 by guest on Septem
ber 14, 2020

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


QQ enzyme screening methods to identify improved
AHL-active variants

One of the bottlenecks in enzyme engineering research is the
ability to develop effective screening or selection methodolo-
gies to identify and isolate desirable mutants (24, 25). From
high-throughput screening (HTS) strategies that allow the
assaying of large libraries (26–28) to medium- or low-through-
put procedures focused on small but high-quality libraries (29–
31), many approaches have been developed. To identify rele-
vant QQ enzymes or enhanced variants, various techniques,
including the use of reporter cells or in vitro assays, were
considered.

Reporter cells

Numerous different reporter strains have been developed
and engineered. Based on AHL sensing, they can be used to
screen AHL-modifying enzymes.Most reporter systems rely on
the same principle as the QS paradigm: AHLs diffuse freely
through cell membranes and bind and activate a specific
response regulator, which in turn binds to its target promoters
activating QS gene expression (Fig. 4A). Usually in reporter
strains, the gene coding for the QS regulator is cloned together
with one of its target promoters (most commonly the promoter
of the cognate AHL synthase) upstream of a reporter gene
or operon, such as luciferase (32–34), b-gal (35, 36), or fluores-
cent marker (e.g. GFP) (37, 38) (Fig. 4A). Exogenous AHL and
cell lysates containing putative QQ agents are incubated to-

gether prior to the addition of the reporting system, which, in
turn, senses and responds proportionally to the quantity of
remaining AHLs. Reporter strains mostly differ by their ability
to respond to a variety of structurally different AHLs, as a func-
tion of the chosen regulator, and in the type of the reporter
gene used. Luminescence, fluorescence, and b-gal activity are
convenient for miniaturized screening (e.g. in microplate for-
mat). However, choosing b-gal requires a biochemical assay to
obtain quantitative results, whereas luminescence and fluores-
cence reporters can be directly measured (39).
One of themost common reporter strains used for screening,

namely Chromobacterium violaceum CV026, does not require
any exogenous sensing plasmid. Indeed, this strain is impaired
(by transposon insertions) in AHL synthesis (40), but its endog-
enous QS system is functional, and QS activation leads to the
production of the purple pigment violacein, which acts as an
antibiotic at high cell density. Therefore, it can be used for
screening purposes and responds best to exogenous AHLs with
chain lengths ranging from C4-HSL to C8-HSL, including
OC6-HSL and OC8-HSL (41–43). In particular, C. violaceum
CV026 was used to screen a metagenomic library of 250,000
clones from a hypersaline soil located in Spain with a pool strat-
egy of 50 clones/well, which resulted in the identification of a
single lactonase, called HqiA, which had no homology with any
known lactonase or acylase. HqiA shared homology with
enzymes from the cysteine hydrolase group as isochorismatase-
like and N-carbamoylsarcosine amidase–like enzymes, but

Figure 4. Screening approaches for identifying novel or improvedAHL-interfering enzymes. A, in vivo assays based on natural QS systems. AHLs are per-
ceived by biosensor cells that consist of a regulator that is activated upon AHL binding and in turn induces the expression of a reporter gene (luminescence,
violacein, fluorescence, or b-gal). In the presence of active QQ enzymes, AHLs are degraded, and no signal is induced. B, in vitro assays. AHL degradation can
be measured in vitro by colorimetric assays (cresol purple) or by fluorescent probes that recognize AHL-degradation products (fluorescamine) or react with
them through copper competition (calcein).
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more studies are required to unravel its function and mode
of action (44).
Another type of reporter system is based on the expression

of a b-lactamase (i.e. a b-lactam antibiotic-degrading enzyme)
and the expression of a b-lactamase inhibitor under regulation
of a QS-sensitive promoter (45). When AHLs are present and
not degraded by the QQ enzyme, the b-lactamase inhibitor is
expressed, resulting in the death of the host strain grown in the
presence of the b-lactam antibiotics. Upon selection of an
effective QQ enzyme, AHLs are degraded, the b-lactamase in-
hibitor is not expressed, and b-lactamase can degrade the anti-
biotic, allowing the growth of the host cells (45). This biosensor
strain was used to identify three improved variants of Bacillus
sp. AiiA, screening an estimated library of 53 105 clones (45).
Nevertheless, all of these reporter systems suffer some draw-

backs, leading to the identification of false positive clones dur-
ing the screening steps. One of these drawbacks is due to the
instability of AHL in cell lysates undergoing alkaline hydrolysis
independently of QQ enzymes. To limit AHL hydrolysis, spe-
cific buffers have been established using Agrobacterium tume-
faciens A136 b-gal reporter strain (46). A second origin of false
positive clones is the inverse proportionality between the effi-
ciency of QQ and the readout of the reporter of these turn-off
assays. Indeed, the higher the activity of the QQ enzyme is, the
more hydrolyzed AHLs are and the lower the expression of the
reporter gene is. This can limit the identification of best candi-
dates and increase the number of false positives. This inverse
proportionality can be reversed by expressing the reporter gene
under the control of a sense/antisense RNA system. Such a re-
porter strain using fluorescence as readout was used for the
selection of improved AiiA variants by screening an estimated
library of 4.1 3 105 clones, leading to the identification of 200
improved variants with a true-positive frequency of 76% (47).
Finally, a third reason for the identification of false positive
clones is the use of live reporter cells whose growth rates may
be hampered by other compounds present in the cell lysates.
To prevent this problem, in vitro assays have also been
developed.

In vitro assays

Various in vitro assays, based on the detection of acidifica-
tion, absorbance, or fluorescence were developed for isolating
active AHL-interfering enzymes.
The hydrolysis of one lactone molecule leads to the genera-

tion of one proton, resulting in the acidification of the medium.
Consequently, enzyme kinetics can be monitored with a pH in-
dicator molecule, such as cresol purple or bromothymol blue,
in a colorimetric assay (43, 48, 49). This assay can be miniatur-
ized and performed in microtiter plates, but its high back-
ground levels make it challenging to use with cell lysates.
Using chromogenic or fluorogenic substrates is usually a fast

and convenient method to screen enzyme libraries, yet not all
substrates can be efficiently substituted by a chromogenic or
fluorogenic one (50). Esterases, which also degrade AHLs, can
be identified using 5-bromo-4-chloro-3-indolyl caprylate (X-
caprylate), an ester that turns blue when degraded or tributyrin.
Both have been used to identify and engineer esterase Est816

from a metagenomic library from Turban Basin (China) (51,
52). Nevertheless, no stable chromogenic or fluorogenic sub-
strate exists for lactonase-type enzymes.
In the absence of representative chromogenic substrate,

other in vitro methods have been developed for the identifica-
tion of acylases or lactonases. Using A. tumefaciens b-gal
biosensors, cell free lysates were prepared bulk and stored at
280 °C (53). These lysates can be used with two substrates,
resulting in absorbance or in luminescence for more sensitive
screens. This in vitro screen was used to identify AHL-produc-
ing strains and luxI homologs (i.e. AHL synthase genes) from a
Desulfovibrio genomic library but could easily be adapted to
QQ enzyme identification by providing exogenous AHL (53).
Two biochemical assays have also been developed based on

the detection of AHL degradation products using specific fluo-
rescent compounds. The first one was based on the detection
of L-homoserine using copper-calcein. Calcein is a fluorescent
chemosensor that can bind various metals and in complex with
metals is not fluorescent (54). The degradation products of
AHL by lactonase and acylase are converted by autohydrolysis
or a secondary enzyme to L-homoserine, which competes for
copper binding. Free calcein is generated, and fluorescence sig-
nal is detected (54, 55) (Fig. 4B). This assay can be adapted to
HTS and was first used to characterize three new lactonases
identified by sequence alignment analyses and harboring an
a/b hydrolase fold homologous to the QQ lactonase AidH (55).
To prove its adaptability to HTS screenings, an Escherichia coli
artificial library was created mixing lactonase and acylase
expressing E. coli cells (in a 125:1 ratio) to identify acylase-pro-
ducing cells (55). The second in vitro fluorescent assay, also
suitable for HTS, was developed recently and applies specifi-
cally to the identification of acylases as it requires primary
amine formation. This assay relies on fluorescamine, a non-
fluorescent reagent, that reacts with the primary amines of
L-homoserine lactones, forming a highly fluorescent complex
(56) (Fig. 3B).
None of these two in vitro biochemical assays have been

reported in QQ enzyme screenings with the exception of the
ones used for their development and their proof of concept. De-
spite the development of turn-on assays and in vitro assays,
most QQ enzyme screenings are based on biosensor turn-off
assays to select best candidates that are further characterized
biochemically using pH-based assays. Screening QQ enzymes
using turn-on assays might be an interesting strategy to quickly
identify themost promising candidates.

Protein engineering techniques to enhance QQ enzyme
activities

Combining protein engineering approaches with efficient
screening procedures permits identification of improved or
finely tuned enzymes (Fig. 5). Given the diversity of QS-using
bacteria and their equally diverse signaling lactones, enzyme
engineering offers an opportunity to develop efficient biocata-
lysts to tackle bacterial virulence issues and strengthens the
antimicrobial arsenal.
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Random engineering strategies

When HTS methods are available, large libraries can be cre-
ated to select promising variants among many others. The
most common technique generating large libraries is random
mutagenesis using error-prone PCR (epPCR). This technique
may be used to explore sequence space without requiring prior
structural knowledge. AiiA from Bacillus sp. was, for example,
engineered with an epPCR approach. Using the above men-
tioned b-lactamase–based assay, the single variant V69L, with
a 3.7-fold increase in catalytic efficiency (kcat/Km) for C6-HSL
was obtained. This mutant was further improved, leading to
the identification of double (V69L/I190F) and triple (V69L/
I190F/G207V) mutants, with 7- and 6.1-fold enhancements in
kcat/Km values for C6-HSL, respectively (45).
Another enzyme, namely MomL from the marine bacterium

Muricauda olearia, with 10 times greater activity on C6-HSL
than AiiA, was also engineered. Three rounds of epPCR were
performed, resulting in the identification of I144V and V149A
mutants with higher efficacy on C6-HSL and OC10-HSL (1.3-
and 1.8-fold, respectively) (43). By sequencing and analyzing
the inactive mutants obtained in this screen, key residues for
MomL lactonase activity have also been identified and would
likely help to guide future engineering work.
Once identified in different variants, several beneficial muta-

tions can also be combined in one enzyme. This approach was
applied to the thermostable esterase Est816 active toward vari-
ous AHLs. Random mutagenesis first led to identification of
two-point mutations (A216V and K238N) exhibiting increased
kcat/Km values toward C8-HSL. Mutant A216V showed 6-fold
enhancement in kcat/Km value resulting from an increased af-
finity (i.e. lower Km value) compared with WT enzyme. Con-
versely, K238N mutation increased kcat value by 8-fold while
decreasing affinity. These mutations have been further com-
bined, leading to an A216V/K238N variant with 3-fold en-
hancement in kcat/Km with C8-HSL compared withWT Est816
(52). Whereas Ala-216 is close to the lactone ring and has a
direct impact on ligand-substrate interactions, Lys-238 is
located on the enzyme surface, and its impact on activity is yet
to be understood.
Random mutagenesis approaches have been shown to in-

crease native lactonase activities on specific substrates, but a
single mutation can also modify an enzyme in such a way that
hydrolysis of new substrates becomes possible. Engineering of a
phosphotriesterase-like lactonase, MCP, from Mycobacterium
paratuberculosis, by randommutagenesis led to the isolation of
an N266Y mutant showing improvement from 4- to 32-fold in
kcat/Km values on usual substrates and able to hydrolyze C4-
HSL and OC6-HSL, whereas no activity was detected on these
substrates for the WT enzyme (32). The same approach was
also applied to a thermostable PLLGKL fromGeobacillus kaus-
tophilus, revealing a quadruple mutant exhibiting better QQ
ability than WT enzyme. Retro-engineering allowed identifica-

tion of the double mutant E101G/R230C with a global increase
in catalytic performance toward AHLs, with a 1.2- and 32-fold
increase, respectively, for C6-HSL and OC12-HSL and, com-
pared with GKL, a new ability to degrade C4-HSL (33).
Random mutagenesis by epPCR was thus efficiently used to

improve lactonase and esterase activities and led to the identifi-
cation of residues playing key roles in AHL hydrolysis, generat-
ing improved and promising QQ enzymes (Fig. 5). In most
cases, beneficial mutations involved residues close to the
enzyme active sites, and activity modulation often results from
an enhancement of hydrophobic interactions between mutated
residues and AHL acyl-chains.

Rational design approaches

Based on two- or three-dimensional information, rational
design is a powerful approach to limit the size of variant libra-
ries and decrease screening efforts. Through analysis of protein
sequence, overall structure, active site or catalytic mechanism,
or molecular dynamics, key amino acids can be identified to aid
design (69).
Docking analysis and molecular dynamics simulations have

been used to enhance activity of AiiA in favor of substrates
having a short acyl chain and to the detriment of those with a
long acyl chain. Computational docking of various AHLs in the
AiiA active site showed that C4-HSL binding could be favored
when hydrophobic interactions with a short acyl chain were
increased and space for a long acyl chain was reduced. To this
end, 15 mutants with hydrophobic residue substitutions were
constructed. Eight mutants showed increased kcat/Km values
with C4-HSL, whereas mutant V69W showed.6-fold increase.
Combining the best mutations, double and triple mutants were
created, leading to a .10-fold activity increase on C4-HSL for
F64W/V69W and F64W/V69W/A206F mutants. Improved
enzymes have also been shown to proportionally lose activity on
long-chain AHLs, substantiating the chosen design approach
(70).
Other lactonases with different scaffolds have also been

rationally engineered. SsoPox is a hyperthermostable PLL
from Saccharolobus solfataricus, hydrolyzing a broad range
of lactones. This enzyme was shown to be resistant to many
deleterious conditions, including high temperature, solvents,
denaturing agents, or sterilization (71, 72). Its tremendous
thermostability is also appealing for engineering purposes
and may help to buffer the damaging effect of beneficial
mutations that are often detrimental to stability (73). SsoPox
active-site structure analysis identified a residue (Trp-263) at
the beginning of loop 8 (Fig. 3B) that impacts enzyme flexi-
bility and specificity (34). This residue was exhaustively
mutated, and kinetic parameters for the best SsoPoxWT sub-
strate (OC10-HSL) and the worst substrate (OC12-HSL)
have been determined. Mutations W263I and W263V im-
proved OC12-HSL degradation by 45- and 54-fold, respectively,

Figure 5. Catalytic performances and stability of native (57–68) and engineered AHL-interfering enzymes.Only enzymes with described kcat/Km values
are represented in this figure. Enzymes are classified by their EC number. Catalytic efficiency (kcat/Km) on various lactones, corresponding to the highest values
reported in the literature are presented using color gradients from blue to red diverging scale. Lactone names and structures are presented at the top. Melting
temperature (Tm) values are presentedwith shades of green from light to dark. Colors and their respective values are detailed in the top left.
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whereas all mutations decreased OC10-HSL activity. Interest-
ingly, all mutations also increased lactonase activity toward d-
and g-lactones, some of them, such as g-butyrolactone, being
potentially involved in Streptomyces sp. signaling (74, 75).
Mutations of the Trp-263 residue were thus demonstrated
to strongly alter SsoPox specificity and activity, whereas
mutants conserved great stability (as measured by melting
temperature), allowing the W263I variant to resist harsh
industrial conditions (71). Among the diverse bacterial
AHLs, Burkholderia cenocepacia mainly uses C8-HSL. To
specifically target this pathogen, an acylase from P. aerugi-
nosa, PvdQ, was engineered (38). This enzyme, originating
from P. aeruginosa, specifically degraded AHLs from C11-
HSL to OHC14-HSL and was thus an ideal candidate for
enzyme engineering toward the degradation of C8-HSL
(23). Structural analysis revealed an unusually large active-
site pocket fostering the binding of long acyl chain lactones.
Following molecular docking of C8-AHL into the active site,
12 residues interacting with the acyl chain were selected for
in silico exhaustive mutagenesis. Computational analysis led
to the design of 18 mutants for further kinetic characteriza-
tion. Two single mutants (L146W and F24Y) exhibited a
great increase in activity for C8-HSL. By combining these
two mutations, the mutant F24Y/L146W increased C8-HSL
activity 4.3-fold, whereas OC12-HSL degradation was reduced
3.8-fold. This shifted preference suggests an accommodation of
the active site toward the targeted substrate and implies that
PvdQwould not be an ideal candidate to engineer a broad-range
degrading enzyme.
To enhance lactonase activity, information obtained from

random mutagenesis can further contribute to a successful
rational design approach. The structure of the previously
described Est816 A216V/K238N, obtained after randommuta-
genesis, was solved and used for in silico docking with an AHL.
Observing that the Leu-122 residue side chain was interfering
with the AHL acyl chain, mutation L122A was considered and
yielded the mutant (L122A/A216V/K238N) with 21.6-fold
enhancement toward C8-HSL compared with WT Est816 (52).
Furthermore, these three improving mutations did not impact
Est816’s great thermostability (Fig. 5). GKL variant E101G/
R230C obtained by random mutagenesis was also intensively
investigated through rational engineering. Residues 101 and
230 have been targeted by site-directed mutagenesis, leading to
a novel double mutant, E101N/R230I, able to hydrolyze OC12-
HSL with a 2-fold increase compared with E101G/R230C, for
72-fold total improvement toward this lactone as compared
with WT enzyme (33). Mutations of the Glu-101 residue alter
the lactone ring positioning by enhancing a critical loop flexi-
bility, whereas mutations of Arg-230 modulate the position of
the attacking hydroxide nucleophile, resulting in a more effi-
cient nucleophile attack angle (76).
The promiscuous activities of enzymes (i.e. their ability to

use substrates other than those for which they evolved) are also
an interesting starting point for a rational design experiment.
PLLs are well-known to have latent phosphotriesterase activity,
and it has been demonstrated that phosphotriesterase (PTE)
quickly diverged from PLL (77, 78). This specificity was used to
considerably enhance lactonase activity from Brevundimonas

diminuta’s PTE. The PTED7-2/254R mutant, obtained by
deleting a few residues specific to PTE, has increased activities
on both C4-HSL and OC6-HSL of more than 2,000-fold, with a
kcat/Km value around 104 M

21 s21 (79). This study demonstrates
the power of rational design to trace back evolution and open
up a new range of possible future efficient lactonase design by
using PTE.
Besides improving activities, rational design can be used to

improve protein solubility or expression in a heterologous host.
The human paraoxonase huPON2, able to hydrolyze various
lactones, has been considered for health-related applications.
Unfortunately, this cell-membrane protein is difficult to ex-
press in soluble form because of an excessive self-aggregation.
huPON2 has then been engineered to enhance its solubility and
facilitate its recombinant expression. Three highly hydrophobic
helixes, unlinked to lactone hydrolysis, have been replaced by
hydrophilic polypeptide linkers, leading to two mutants (D2
and E3) with higher soluble expression (6.2 and 3.2 mg/liter of
culture). The latter have then been fused to maltose-binding
protein (MBP) to lead to a final protein yield of 320 and 200
mg/liter of culture for MBP-D2 and MBP-E3, respectively,
whereasMBP-huPON2 has only been expressed in its insoluble
form (80).
Rational design appears as a useful tool to directly target

enzyme hotspots to enhance lactonase activity. Both random
mutagenesis using epPCR and rational design experiments
resulted in new enzyme variants with strongly enhanced activ-
ities (Fig. 5). Whereas randommutagenesis improved activities
by an order of magnitude, rational design led to close to 100-
fold improvement, relying on mutations that have a direct
interaction with the substrate in the active site. These engi-
neered QQ enzymes, able to block bacterial communication
with high efficiency, constitute promising candidates that can
be used in a broad spectrum of applications. However, it has
been observed that engineering studies focus on catalytic effi-
ciency improvement, whereas stability and solubility of the pro-
tein are rarely considered. Only a few studies have measured
the loss in stability generally induced bymutations (Fig. 5). This
should be considered in forthcoming studies to yield easily
expressed and resistant QQ enzymes, usable in industrial
processes.

Biotechnological applications

Going beyond kinetic and structural characterization,
numerous engineered enzymes were evaluated for their appli-
cation potential. As QS regulates various bacterial phenotypes
associated with virulence, QQ may find application in several
fields, including human and animal health or agriculture. Fur-
thermore, biofilm formation is also primarily governed by QS,
so that disruption of bacterial communication is of primary in-
terest in limiting biofouling problems and preventing biofilm
impact on human health Table 1.

Human health

QS plays an important role in pathogenicity of numerous
invasive bacteria such as P. aeruginosa or A. baumannii (13,
18, 19). Due to rising antibiotic resistance, alternative and/or
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complementary therapeutic strategies are required (81). QQ
is an appealing approach to tackle bacterial virulence in vitro
and in vivo, without compromising bacterial survival, and
QQ enzymes have been isolated and engineered toward this
end.
SsoPox mutant W263I was obtained through rational engi-

neering and was shown to efficiently decrease virulence factor
production of P. aeruginosa clinical isolates, especially pyocya-
nin, protease, and biofilm formation, with higher efficacy than
chemical QS inhibitors (i.e. furanone C-30 and 5-fluorouracil)
(82, 83). SsoPox W263I variant reinforced antibiotics and bac-
teriophage treatments against P. aeruginosa in vitro and in vivo
using an amoeba infection model with Acanthamoeba poly-
phaga (84) and was further shown to alter the regulation of the
CRISPR-Cas system in P. aeruginosa clinical strains, thereby
potentially modifying their ability to compete with phages. In
fact, this finding is consistent with the previous observation
that the CRISPR adaptation system is induced by QS at high
population density (85–87). Finally, this variant also reduced
biofilm formation and violacein production and down-regu-
lated CRISPR-Cas genes ofC. violaceum, a tropical aquatic bac-
terium responsible for rare but frequently fatal infections in
animals and humans (85, 88, 89). In vivo, SsoPox W263I was
also proved to protect rats from P. aeruginosa infection in a
pneumonia model. Fifty hours after infection, 75% mortality
was observed in untreated rats, whereas mortality was reduced
to 20% in treated animals (90). QQ effects were also obtained in
A. baumannii, with another engineered enzyme, GKL E101G/
R230C, able to reduce biomass, thickness, and surface of bio-
film formed by this pathogen (91, 92).
Similarly, acylases have also been assayed for potential thera-

peutic use. The engineered QQ acylase PvdQ F24Y/L146W
(38) was proved to reduce the virulence of Burkholderia cenoce-
pacia, both in vitro and in vivo. By preincubating the bacteria
and the variant before injection in Galleria mellonella larvae,
drastic enhancement in survival was obtained as compared
with larvae treated withWT enzyme; nearly 100% of larvae sur-
vived with PvdQ F24Y/L146W and around 20% of larvae sur-
vived with PvdQ WT (38). One of the limitations of the thera-

peutic use of QQ enzymes is their potential to trigger an
immune response (80). To that end, the huPON2, as described
previously, has been engineered for QQ purposes to benefit
from minimal immunogenicity and a soluble expression.
huPON2 D2 and huPON2 E3 variants have been obtained and
tested on swimming and swarming motilities in P. aeruginosa
PAO1. Inhibition of P. aeruginosamotilities has been observed;
however, huPON2 D2 and huPON2 E3 variants were not better
than AiiA lactonase (80).
Engineered enzymes have also been immobilized for antivir-

ulence purposes. SsoPox W263I was immobilized in polyur-
ethane coating and was able to decrease virulence factors of P.
aeruginosa PAO1 (82). AiiM, a WT lactonase isolated from
Microbacterium testaceum StLB037, was overexpressed in E.
coli DH5a as a recombinant protein with a maltose-binding
protein tag (MBP-AiiM) for its purification process and was
then successfully incorporated in polyvinyl alcohol fibers by
electrospinning. MBP-AiiM was capable of quenching QS-de-
pendent prodigiosin production in Serratia marcescens AS-1
(93, 104).

Aquaculture

Besides human health, QQ offers a promising approach to
counteract bacterial infections in animals. Aquaculture, for
example, suffers from a large number of bacterial diseases
responsible for multibillion US dollar annual losses (105).
Gram-negative bacteria, including Vibrio harveyi, Vibrio para-
haemolyticus, and Aeromonas hydrophila, are responsible for
numerous diseases in a large variety of marine animals (106–
108). Antibiotics are largely used to control bacterial infection
in fish farming; however, these antibiotics have great impact on
host and environmental bacteria leading to resistant pathogen
emergence (109). Thus, native and engineered QQ enzymes
constitute an appealing strategy for aquaculture (18, 19).
Many different AiiA-like lactonases have been assayed as

proof of concept of QQ efficiency to limit diseases in aquacul-
ture. AiiA lactonase fromBacillus thuringiensis has been shown
to disturbVibrio harveyiQS. In the presence of AiiA,V. harveyi
luminescence was decreased by 85% (95). Another AiiA, from

Table 1
QQ enzyme applications, assayed bacteria, and related phenotypic changes

Applications QQ enzymes Quenched bacteria Measured phenotypes Reference

Human health GKL-E101G/R230C Acinetobacter baumanii Reduction of biofilm 91, 92
huPON D2 P. aeruginosa PAO1 Diminution of swarming and swimming motilities 80
huPON E3 P. aeruginosa PAO1 Diminution of swarming and swimming motilities 80
MBP-AiiM S. marcescens AS-1 Decrease of QS-dependent pigment 93
SsoPox-W263I P. aeruginosa Reduction of biofilm/decrease of QS-dependent

pigment/diminution of proteases/reduction of
CRISPR-Cas gene expression/decreased mortality
in rats

82–85, 90

PvdQ-F24Y/L146W B. cenocepacia Decreased mortality in moth larvae 38
Aquaculture AiiA from B. licheniformisDAHB1 V. parahaemolyticus Reduction of biofilm/decreased mortality in shrimps 94

AiiA from B. thuringiensis V. harveyi Diminution of bioluminescence 95
AiiA from Bacillus sp. AI96 A. hydrophila Decreased mortality in zebrafishes 96
AiiA from Bacillus sp. B546 A. hydrophila Decreased mortality in carps 97

Agriculture AiiA from B. amyloliquefaciens P. carotovorum subsp. carotovorum Reduction of infection on carrots 98
AiiA from B. subtilis BS-1 P. carotovorum subsp. carotovorum Reduction of infection on potatoes 99
MomL-I144V P. carotovorum subsp. carotovorum Reduction of infection on cabbages 43
MomL-V149A P. carotovorum subsp. carotovorum Reduction of infection on cabbages 43

Biofouling Acylase from porcine kidney Complex communities/P. aeruginosa Reduction of biofilm 100, 101
Biocorrosion SsoPox-W263I Complex communities Reduction of biofilm/diminution of biocorrosion/

changes in bacterial population proportions
102, 103
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Bacillus licheniformis DAHB1, was able to decrease the Indian
white shrimp mortality rate from 80 to 23% after 5 days of
infection by V. parahaemolyticus; both bacteria and enzyme
were administered by injection into the abdominal cavity (94).
The lactonase AiiA, from Bacillus sp. B546, was used to reduce
A. hydrophila mortality in common carp, decreasing the mor-
tality at 4 days down to 54% compared with 79% without
enzyme (97). Furthermore, another AiiA, from Bacillus sp.
AI96, decreased mortality rate in zebrafish by oral administra-
tion down to 20% as compared with 60%without enzyme (96).
These promising results, based onWT lactonases, show that

the use of engineered enzymes that offer better stability, effi-
ciency, or immobilization may merit further testing to poten-
tially replace antibiotic use in aquaculture. Moreover, testing in
conditions closer to real-world situations will also be needed.

Agriculture

Bacterial infections not only affect humans and animals, but
also plants. Agricultural ecosystems are impacted by numerous
bacterial plant pathogens, for instance Pectobacterium caroto-
vorum responsible for soft rot on various hosts such as potatoes
or Chinese cabbages (110, 111), Erwinia amylovora responsible
for fire blight (112, 113), or A. tumefaciens causing crown gall
disease (114, 115). These and other diseases have a significant
economic impact on agriculture and on the quantity and qual-
ity of food (116, 117), hence the interest of the QQ approach to
control diseases caused by bacterial plant pathogens.
Currently, no endogenous enzyme capable of quenching bacte-

rial QS has been described in plants (18). Some plants, such as
Lotus corniculatus, Hordeum vulgare (barley), and Pachyrhizus
erosus (yam bean), have been shown to naturally degrade the QS
signal, possibly by enzymatic degradation, but this has not yet
been proven (118, 119). Conversely, soil bacteria are known to
produce QQ enzymes, like AiiA from Bacillus sp., AttM from A.
tumefaciens, or QsdA from Rhodococcus erythropolis (120–122).
This is the reason why the use of these bacterial enzymes is
attractive. For instance, AiiA from Bacillus subtilis BS-1 and AiiA
from Bacillus amyloliquefaciens, have been shown to reduce Pec-
tobacterium carotovorum subsp. carotovorum (Pcc) soft rot
symptoms on potato and carrot slices, respectively (98, 99). Simi-
larly, the variants MomL I144V and MomL V149A obtained by
random engineering were able to decrease infection of Chinese
cabbage by Pcc. Cabbage leaves have been infected with Pcc, in
the presence of MomL variants or controls, on a cut surface of
the leaf; thus,MomL variants greatly reduced decay areas (43).

Biofouling/biocorrosion

Biofouling is a colonization phenomenon of immersed surfa-
ces by aquatic organisms. This surface behavior detrimentally
affects diverse activities such as wastewater treatment, marine
transport, or aquaculture. Wastewater treatment is well-
advanced in QQ applications, especially for protecting mem-
brane bioreactors (MBRs) from biofilm formation using whole
bacteria (123, 124) or QQ enzymes. Mainly, the porcine kidney
acylase was used to reduce biofilm formation in MBR systems.
For instance, acylase WT immobilized in sodium alginate cap-
sules reduced biofouling formation and improved filterability

of MBR systems (100). The same acylase immobilized on mag-
netically separable mesoporous silica particles was also capable
of preventing fouling, as observed by confocal laser-scanning
microscopy, and enhancing filtration performance, determined
by membrane permeability measurements (101). QQ enzymes
in MBR systems have proven their efficiency, and engineered
enzymes were further evaluated for their anti-biofilm property.
Recently, a recirculating bioreactor with a filtration cartridge
containing bacteria expressing SsoPox W263I in silica capsules
was developed to assess the impact of QQ on complex bacterial
communities. The presence of SsoPox variant in capsules led to
changes in bacterial communities and to biofilm inhibition
(102). SsoPoxW263I immobilized in a silica gel coating painted
on steel plates was also able to reduce corrosion tubercles by
50% compared with controls after 8 weeks of immersion in
Duluth-Superior Harbor (Minnesota, USA) (103). The use of
enzymes instead of or as a complementation to biocides in
paint is attractive, due to use restriction of some biocides
because of their negative impact on the environment (125).
With respect to both antifouling and anticorrosion strategies,
enzyme engineering could offer suitable catalysts with high ac-
tivity or stability to develop bioactive materials and coatings.
All of these promising applications need further develop-

ment, such as a larger range of improved enzymes, upscaling to
industrial applications, experiments performed in more rele-
vant situations of bacterial colonization and infection, and also
better controls to confirm enzyme action on target.

Concluding remarks and prospects

AHL-interfering enzymes constitute a promising alternative
or complementation to classical antimicrobial treatments. This
review highlights several recent advances achieved thanks to
enzymatic engineering approaches. Numerous efforts have
been dedicated to isolating AHL-degrading enzymes specifi-
cally using environmental samples from extreme environ-
ments, including enzymes that are sufficiently stable for real-
world applications. Some of the identified QQ enzymes were
further characterized and engineered for enhanced activities.
The availability of these enzymes allowed the development of
laboratory-scale prototypes that now need to be turned into
scalable and cost-effective solutions to reach preclinical tests
and clinical trials. Considering the wide structural variety of
AHL signals, the AHL-degrading enzyme stability, activity lev-
els, and substrate specificity are critical parameters to achieve
the desired QQ effects. The importance of the latter property
was recently investigated using the lactonases SsoPox W263I
and GcL from Parageobacillus caldoxylosilyticus in P. aerugi-
nosa PA14 or clinical isolates, revealing that lactonases with
distinct efficacy toward AHLs yielded drastically different
quenching effects at both molecular and phenotypic levels,
the broadly active enzyme being not necessarily the most effi-
cient (83, 126). These results underscore the determinant
role of enzyme specificity on QQ at a single-species level and
demonstrate that catalytic performance may not be used as
the sole selection criterion and that specific screening has to
be developed to assess the potential of QQ enzymes in spe-
cific systems. Therefore, more selective QQ enzymes as tools
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will help in the development of powerful and specific interfer-
ence strategies. Although targeting AHL-based QS using
enzymes is appealing for mitigating the virulence of Gram-
negative bacteria, similar strategies must be considered for
targeting the wide natural diversity of AIs. In Gram-positive
bacteria, autoinducing cyclic peptides have largely been
described (127), whereas their enzymatic quenching has been
poorly considered to date. In Gram-negative bacteria,
although AHLs are widespread, other molecules, including epi-
nephrine (AI-3) (128) or quinolones (129), are found in various
pathogens and could constitute relevant target to broaden QQ
range of action. Moreover, the furanosyl diester AI-2 is found in
both Gram-positive and Gram-negative bacteria and may be
involved in interkingdom signaling (130). AI-2 could thus also
constitute a promising target, and enzymes able to interfere with
this compound need to be further investigated (131). Once poten-
tial QQ enzymes are identified for these AIs, rational engineering
and randommutagenesis strategies will allow the enhancement of
their activity and of their antivirulence effect. In any case, the isola-
tion of enzyme variants efficiently targeting bacterial pathogenic-
ity will require novel screening methodologies not only to deter-
mine their ability to degrade AIs but also to evaluate their capacity
to directly compete with bacterial phenotypes (e.g. biofilm forma-
tion and production of virulence factors) in conditions that may
be realistic with regard to a defined final application.
In the short term, expanding and diversifying the repertoire

of QQ enzymes will be necessary to finely control bacterial
communications. Particularly, the role of QS in polymicrobial
infections or dysbiosis is still poorly understood, and develop-
ing a wide variety of enzymatic quenchers will providemiscella-
neous tools to interfere with complex multicellular processes.
Moreover, the complementarity of QQ enzymes with classical
antimicrobial treatments has been demonstrated (84) and has
to be further considered, as it would constitute a promising
strategy to strengthen the therapeutic arsenal and poten-
tially limit the doses of antibiotics in human and animal
health or biocides in environmental applications. Finally,
enzymes need to meet industrial and regulation require-
ments to reach concrete applications. Toxicity or immuno-
genicity, for example, will have to be considered for health-
care applications, and strategies such as nanoencapsulation
may have to be envisaged to limit immune system response.
For large-scale environmental applications, including anti-
fouling or agriculture, production costs or stability may con-
stitute an economic bottleneck and need to be carefully con-
sidered. Protein, metabolic, and process engineering will have to
be combined to allow for the high-level microbial production of
highly active enzymes to turn the enzymatic QQ into an eco-
nomically attractive solution.
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